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Abstract--The effect of a rheological factor on a temperature field in a heterogeneous tissue in its SHF 
heating is considered. A microvascular system is presented in the form of quasiporous media and is replaced 
by an equivalent tube. The relation is found between relative change in perfusion, the parameter of blood 
viscoplasticity and hydraulic diameter of an equivalent tube. Perfusion is found to be proportional to the 
cube of a hydraulic diameter of this tube and conversely proportional to the value of the parameter of 
viscoplasticity. Their possible values and the range of variation with local hyperthermia (LH) are estimated. 
It is shown that the values of the parameter of viscoplasticity within the range 14).06 correspond to small 
shear rate (5-100 s-~). The changes in the hydraulic diameter in a normal tissue in LH may attain 20- 
80%, the changes in the parameter of viscoplasticity may vary by 2.5 and more times. It is shown on the 
example of frequencies 2450 and 915 MHz that the rheological factor of blood flow exerts a very substantial 

effect o13 a temperature field in tissue, especially in the presence of a slightly perfused tumour in it. 

1. INTRODUCTION 

One of  the trends of  the investigation of  heat and mass 
transfer processes in biological objects is the study 
and modeling o f  hemodynamics with hyperthermia of  
malignant tumouLrs. Urgency in these studies is 
stipulated by the necessity of  sustaining rather a 
narrow range of  temperatures in tissue with LH and 
by a large value of  a convective component  of  heat 
sinks in a heated region. 

As is known [1], the most effective modes of  tumour  
hyperthermia are attained at temperatures 42-45°C 
(the therapeutic range). These conditions may be real- 
ized by varying tlhe power of  super high frequency 
(SHF) radiation and heat transfer on the outer 
surface. Thermal processes in tissue are then deter- 
mined by electromagnetic and thermophysical charac- 
teristics (thermal conductivity, heat capacity, density), 
heat carried away from tissue by a blood flow (per- 
fusion) and heal: convection into a surrounding 
medium. 

A determining role in this case is played by 
perfusion, i.e. by blood flow rate in a time unit per 100 
g of  tissue. As is known [2], with local hyperthermia in 
different tissues being heated, perfusion may increase 
by an order of  one or  more. A strict description of  
this temperature dependence of  a blood flow requires 
a correct allowance for a rheological factor and hemo- 
dynamic characteristics of  a blood-vascular  system. 
This is the aim of  the present paper. 

2. MODELING OF A RHEOLOGICAL FACTOR 

A great number of  papers are devoted to modeling 
a blood flow. They, as a rule, consider a blood flow in 

a separate cylindrical channel with rigid [3, 4] or  elastic 
[5] walls, impermeable or permeable [6-8], under the 
conditions of  constant or fluctuating pressure [9]. This 
description does not  solve the problem of  the evalu- 
ation of  a blood flow in an animate tissue or in an 
organ due to the extremely complex and diverse archi- 
tectonics of  a microvascular system, uncertainty and 
variability of  hemodynamic parameters, in particular, 
geometric and rheological. 

An approach based on the model  of  a quasiporous 
medium, through which a non-Newtonian fluid is fil- 
tered, seems to be promising. 

For  non-round channels and porous impermeable 
media use is made of  the concept of  a round equivalent 
tube providing, with the same head, the flow rate 
equal to that in the channel or  a porous medium. 
A hydraulic diameter is determined by the relation 
D = 4S/FI, where S is the cross-sectional area of  a 
non-round channel or  a porous medium, I-I is the 
wetted perimeter [10]. 

The relation between a hydraulic diameter and the 
geometry of  a flow through system and other charac- 
teristics, e.g. blood filling, is a complex independent 
problem. In the present paper we only use a concept 
of  an equivalent tube for a simplified description of  
the relative change in perfusion with LH. 

Consider the effect of  the Iliyushin plasticity par- 
ameter on tissue heating for the Shvedov-Bingham 
state 

z0 "O 
I! = - -  (1) 

Blood as a suspension of  forming elements (leu- 
kocytes, erythrocytes, etc.) in plasma is strongly non- 
Newtonian. A rheological behaviour of  a non-linear 
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NOMENCLATURE 

a Bouger coefficient of absorption of 
electromagnetic energy [m J] 
Biot number,  ~" HI2 
heat capacity [J k g - K  -l] 
hydraulic diameter [m] 
perfusion [ml" (100 g tissue min) -l] 
current coordinate (depth) [m] 
depth of a heated layer [m] 
Iliyushin parameter, roD/(ppa) 
[non-dimensional] 

L length of effective tube [m] 
n, m dimensionless nonlinearity parameters 

of a generalized rheological model of 
viscoplastic medium 

P power of a SHF-emitter [W] 
Q volumetric blood flow rate through an 

effective tube [m 3 s -I] 
q0 surface density of electromagnetic 

radiation power on skin [W m -2] 
R radius of effective tube [m] 
S Saint-Venan parameter, 

"~ODn/m(~pfl) -n/m [non-dimensional] 
s, d, b, c parameters of SHF-emitter 

[kg-1, m, m -~, m, respectively] 
T temperature [°C] 
To homeostasis temperature [°C] 
Ts temperature of cooling fluid [°C] 

Bi 
C 
D 

f 
h 
H 
I1 

~7 mean linear velocity of flow in a tube 
[m s- ' ]  

Wb blood mass flow rate [kg m -3 s 1] 
x dimensionless coordinate layer depth, 

h/H. 

Greek symbols 
tO dimensionless temperature, 

( T -  To)/(To - Ts) 
coefficient of heat transfer on skin 
surface [W m -2 K -1] 
shear rate [s-l] 

(~)  shear rate averaged over tube cross 
section Is ~] 
relative thickness of a quasisolid core 
of a viscoplastic flow, Zo/Zw 

2 thermal conductivity [W m - l  K - ' ]  
pp analog of plastic viscosity IN m -2 S] 
p density [kg m -a] 
z0 yield stress [N m -2] 
Zw shear stress at a tube wall IN m -2] 
z shear stress [N m-2]. 

Subscripts 
b refers to blood 
in initial value of a parameter. 

viscoplastic medium in a general case [11] is described 
by the governing equation 

~1/° = ~ / .  + (~p?)~/,n. (2) 

Now, in biomedical and clinical studies the Casson 
model, a particular case of equation (2) at n = m = 2, 
is the most widespread one. 

The curve of the Casson flow is approximately valid 
within the range of shear rates 0.01-20 s ~ [22] for 
normal blood in the absence of thermal, chemical, 
radiate and other effects. Deviations from the Casson 
curve are observed beyond this range and in patho- 
logical cases (ischemic disease, diabetes, diseases of 
blood itself, etc.). Biorheological studies of the last 
decade, conducted in Moscow, Kiev, Minsk and Nizh- 
niy-Novgorod,  showed non-adequacy of the Casson 
flow curve (CFC) to the real mechanical behaviour of 
normal blood. Figure 1 depicts Sundukov's  processing 
of his own rheometric experiments [13]. Three pairs 
of the values of non-linear viscoplasticity were used 
in a general law (2): (a) n = m = 1, the Shvedov- 
Bingham fluid (a linear model) ; (b) n = m = 2, the 
Casson equation ; and (c) n = m = 3, a more general 
rheological dependence. Based on these data a real 
curve of a normal blood flow is better approximated 
by equation (2) with m = n = 3 than by the Casson 
model. 

Any pathology, in principle, affects the theological 

behaviour of blood, this is indirectly expressed by 
the change in the rate of erythrocyte precipitation. 
Consequently, in many diseases the curve of blood 
flow may be characterized by n ~ rn, within the ranges 
1 ~< n ~< 3, 1 ~< m ~< 3 ; in this case the rheological par- 
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Fig. 1. Blood rheometry by A. N. Sundukov. 1, n = rn = 1 ; 
2, n = m = 2 ; 3 ,  n = m = 3 .  
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ameters n and m may not  be integers (with the rule of  
signs of 'c and ~ being observed). 

With a stabilized pressure flow of  any inelastic non- 
Newtonian fluid in a cylindrical tube the flow rate Q 
and the flow curve f ( z )  are related by the M o o n e y -  
Rabinovich universal dependence [11] 

Q 1 f~ 'c2f( 'c )  d'c - ( 3 )  
~R 3 'c3 w 

where R is the tube radius, rw is the shear stress on the 
tube wall. 

In the considered cases 

f ( z )  = ('c'/'--z~/")m#p (4) 

where n = m = 3 or n = m = 2. After  the substitution 
of  equation (4) into (3) and subsequent integration 
obtain 

where 

Q.,mtQ~ = ~0.,,.(0 (5) 

q) . . . .  21;¢) 1 ~¢,/2 4 , ,  = - -  +~¢-77¢  , (6) 

=: 36ffl/3 q~ . . . .  3(¢) 1--77, +1~(2/3--~¢+1~7¢ 4. (7) 

Here ¢ = 'c0/'cw = ro/R is the relative thickness of  a 
quasisolid core, QN = n R 4 A P / 8 ~  L is the Poiseuille 
flow rate of  a Newtonian fluid with the viscosity pp 
through a cross-section of  a cylindrical tube. 

Equat ion (5) corresponds the flow rate Q,,m to the 
Newtonian analog. In a general case relation (5) does 
not  match a relative change of  blood flow (perfusion 
f o r  mass blood flow rate Wb) before and after the run 
of  hyperthermia because blood is of  a non-Newtonian 
character even before heating. 

Rheological description of  blood flow by the Ili- 
yushin parameter is incomplete. A non-Newtonian 
character of  blood manifests itself also in the absence 
of  structure formation, i.e. at 'co = 0. In this case vis- 
cosity remains reduced even with the growth of  the 
shear rate and blood behaves as a non-linear viscous 
fluid. 

Simultaneous and more complete account for non- 
linear viscosity and viscoplasticity is achieved at n 
and m being not equal to each other. However,  the 
quantity 'co, as a structural characteristic of  blood, has 
a determining valae both in normal and pathological 
states. That  is the reason for the analysis based on the 
Iliyushin parameter to be of  interest. 

In a general case of  n :~ m there takes place the 
complex including the parameters of  viscous, m, and 
plastic, n, non-linearities 

"co "D "/m 
s - - -  (8) #~>/,,,. a,./,,, 

that changes over to the parameter II at n = m. 
The Iliyushin criterion (1) and formula (3) yield the 

expression for the relative change in the fluid flow rate 
through a cylindrical channel at arbitrary positive n 
and m. 

If  n and m are the integers, then 

_ 1 ('ctt, 'cl/ .)m= 1 " 
s u )  - ° 

Having substituted this expression into (3), we 
obtained (see [1 1]) 

n /rR 3 
- r" /" ,~  ( r~  ( 9 )  

Q 3 n + m  #p . . . . . . . .  

where 

(Pn,m(() = ~.~ (Ok/Oo)((k/n--(rain+ 3) (10) 
k=0 

(--  1)k ck,. 
a~ 

3 + (m--  k)/n" 

I f  n and m are rational numbers, then, having 
expandedf( 'c)  into a series of 'c and substituted it into 
(3), we obtain the expression for the flow rate similar 
to equation (9) (see [11]), where 

q)m,n(() = ~ (BUBo)(~k/"-("/"+ 3). 
k=0 

Note,  that 

q~,,m('c0 = 0) = 1 ; 40,,,,('cw = "CO) = 0. 

F r o m  the determination of  criterion (8) and for- 
mula (3) have 

"co(2R) "/" ¢ 
S = - (2(3 +m/n))  "/m 

#~,I"(Q/nRZ) "1" q~,,m(O":" " 

(11) 

For  relative variation of  flow rate obtain the 
expression 

R 3 a -- ( __~  ~/p,in ( Tw/'C0 ~min('cO ~m/n C, On,m(( ) 
Qin \Rin/] ~p \'cw,in/'c0,in/] \'c0,in/] ~0n,rn ((in) 

= ( R ~  3 ~/p,in ((in~m/n('cO ~m/n (L~m/n (Sin~m/n 
\Ri,/] #p \ ( / ]  \'c0,in/ \(in/ \ S/]  

and, thus 

Q/Qi, = (R/gi , )  3 (#p,inl#p)('coSi,lZo,i,S) m/". (12) 

In deriving equation (12) it was assumed that the 
coefficients n and m are constant. 

In a particular case of  n = m the criterion S is con- 
verted to the Iliyushin c r i t e r i o n / / a n d  expression (10) 
is transformed to equation (6) at n = m = 2 and to 
equation (7) at n = m = 3. A relative variat ion of  the 
fluid flow rate is then described by the formula 

Q = (R)3#p , in  % Ilin (13) 
Qin ~ #p -c0,i. I I"  

If  ~0 = 0, then from equation (9) we have 

Q/ai .  = (R/Rin)3+'l"(#p,i./16,) 
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(the latter expression is given for the case of  
Ap/L = const.). 

We have not as yet at our disposal the data in vivo 
on the change of  pp and T0 during hyperthermia. The 
data of  rheometric studies in vitro of  the temperature 
effect on blood rheological characteristics [15] indicate 
the reduction of  #p and t0 with an increase of  tem- 
perature from normal to 45°C. On the other hand, 
literature [14] gives the facts of  an increase of  fibrino- 
gen and albumin concentrations in a tumour  with 
heating (especially at temperatures higher than 45°C), 
this fact should be accompanied by the growth of  pp 
and v0. The increase in the blood viscosity is also 
facilitated by the decrease o f p H  in a tumour  [16, 17]. 
Taking the above into account, we assume in the first 
approximation 

(7-'0/T0,in)/(flp///p,in) ~ 1. (13') 

Then, a relative variation of  the flow rate and thus 
of  the mass blood flow rate may be presented as 

W b (R'~3Ilin 
W~b,~n -- \ ~ J  H - '  (14) 

The Iliyushin parameter,  generally speaking, 
depends on the tube radius. However,  there are exper- 
imental and theoretical data confirming the fact that 
in the system of  blood microcirculation with normo- 
thermia (and, apparently, in the absence of  muscular 
activity) the flow rate through a vascular tube is pro- 
portional to a cube of  the diameter of  this vascular 
tube [18, 19]. Hence follows the independence of  I1 on 
R under these conditions. Change in blood viscosity 
on its heating during LH may violate this conclusion 
(in particular, due to the fact that this viscosity itself 
depends on the value of  an effective diameter of  the 
vascular tube because of  the Fahraeus-Lindqvis t  
effect). Moreover ,  when we have to do with thermo- 
regulation in LH, a postulate on the correspondence 
of  vascular reactions to the minimum of  energy losses 
for blood passing through a vascular tube used to 
substantiate a cube dependence of  a flow rate on a 
vascular tube diameter seems to be questionable [19]. 

1.00 

I1 O.lO 

0.01 I I 
0 4o 8o 

<¢t> 

Fig. 2. Iliyushin parameter for average shear rate. 

Figure 2 presents our estimate of  an absolute value 
of  the p a r a m e t e r / / m a d e  proceeding from the relation 
II = (nz0/#p)(1/(~)) and from mean shear velocities 
(~)  = 5-100 s-1, typical of  some portions o f  the sys- 
tem of blood microcirculation [20, 21]. It was taken 
here that To = 0.01 N m -2, /lp = 5 × 10 -3  N m -2 s. 
Because limiting values for r0 do not exceed 0.05 N 
m -2 [22], then within the above range for (~)  
maximum values of  the Iliyushin parameter may 
attain (in some pathologies) several tens. 

According to (14) perfusion changes in proport ion 
to the cube of  a vascular tube diameter. Consequently, 
the ratio R/Rin, along with the Iliyushin criterion, 
determines the intensity of  heat removal by blood 
from the heating zone with local hyperthermia. 

Literature gives different data on the change of  a 
diameter of  vascular tubes under the effect of  various 
factors, a thermal one being included. 

Table 1 gives our estimates of  relative changes in 
diameters of  vascular tubes and the parameter of  
viscoplasticity made on the basis of  equation (13) in 
the approximation of  (13'). In those cases when use 
was made of  the data on a vascular volume it was 
assumed that this volume is proport ional  to the square 
of  a hydraulic diameter of  an equivalent tube. 

As is seen from Table 1, with LH the most con- 
siderable increases in the effective diameter of  vascu- 

Table 1. Vascular and hemodynamics changes with local hyperthermia 

Change of 
vascular Change of 

Tissue volume blood flow D/DI, ll~n/ll Note 

Skin 2.93 - -  1.71 - -  
3.0 4.0 1.73 0.77 
2.42 3.73 1.56 0.99 
3.5 12.0 1.88 1.82 

Muscle 1.59 - -  1.26 - -  
1.5 3.5 1.23 1.91 
1.48 2.94 1.22 1.64 

Tumour 1.06 - -  1.03 - -  
0.34).7 g 1.06 1.16 1.03 1.06 
2-5 g 0.97 0.90 0.99 0.91 

0.93 0.13 0.95 0.15 
0.98 0.24 0.99 0.25 

rats, 43°C, 1 h [28] 
rats, 43°C, 1 h [29] 
rats, 43°C, 1 h [30] 

human, 43°C, 1 h [31] 
rats, 43°C, 1 h [28] 
rats, 43°C, 1 h [29] 
rats, 43°C, 1 h [30] 

rats, 43°C, 1 h Carcinoma Walker 256 [28] 
rats, 43°C, 1 h [30] 
rats, 43°C, 1 h [30] 

rats, 42.5°C, 1 h, Melanoma, A-Mel-3 ; arterioles [32] 
rats, 42.5°C, 1 h, Melanoma, A-Mel-3 ; venules [32] 
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lar tubes are observed in skin (by 1.6-1.9 times at 
temperature 43°C maintained for 1 h). Vascular of 
muscles under the same conditions thickens by 22- 
26% and the effective diameter of tumour vascular 
changes insufficierLtly both towards its increase and 
decrease. The latter is observed in rather large malig- 
nant new formations. These data are in accordance 
with the familiar postulate on considerable differences 
in the reaction to heating of vascular of tumour and 
normal tissues [231i. 

However, based on these data we cannot made 
unambiguous conclusions relative to Ilin/II. One may 
confirm that with LH in normal tissue a decrease in II 
is possible by more than two-fold, in tumor Walker 
256 the parameter H changes slightly and in melanoma 
A-Mel-3 a 4-6-fold growth of this parameter is 
possible. 

3. HEAT PROBLEM 

Let us approximately estimate the effect of the rheo- 
logical factor on the temperature field in tissue on 
attaining a stationtary state. To simplify the analysis 
proceed from a one-dimensional (1D) biothermal 
equation [I]. Let an electromagnetic field heat a layer 
of a uniform tissue. Its outer surface (skin) is cooled 
by fluid having a ~Lemperature Ts and a coefficient of 
heat transfer ~, and at a depth H, T' = 0 is prescribed 
(Fig. 3). 

2 d z T - b q R - q b + q m  = 0 
dh 2 

_ 2  dT 
dh h=0 = ~(Ts-Tlh=0) -. (15) 

dT = 0  

~h=H 

The density of internal heat sources produced in 
tissue by SHF radiation is described by the expression 
for a plane electromagnetic wave [24] 

h 
x = ~  

where 

qR = P "s" P ' exp  ( a ( h -  d)) exp (by2/(1 + c)). 

(16) 

This relation contains the parameters (a, b, c, d, s), 
dependent on the geometry and frequency of an emit- 
ter. Since we estimate the effect of a rheological factor 
on the example ofa 1D problem (y = 0) and at several 
frequencies (2450, 915 and 463 MHz) and equal sur- 
face densities of electromagnetic radiation on a skin 
q0, present qR in the form 

qR = --q0aexp (ah). (16') 

Determine the density of hemodynamic heat sinks 
by a convective condition 

qb = WbCb(T-- To) (17) 

where Cb is the blood heat capacity, Wb =fPbP is the 
mass blood flow rate. 

The power of metabolic heat releases in tissue dur- 
ing intense SHF hyperthermia may be neglected [25]. 
The dimensionalization of (15) leads to the system 

O"--B20+Rexp  ( a ' H ' x )  = 0 ]  

0'Ix=0 = Bi(1 +0Ix=0) I (18) 

0' lx=]  = 0 

~H T--To B2 WbCbH 2 
~ i = - £ -  o T o - T s  - ,~ 

- -  qo all2 
R - (19) 

2 ( T 0  - Ts)" 

A common solution of the problem has the form 

(1) when B 4= [aHl : 

0 = C exp ( -  Bx) + D exp (Bx) + E exp (aHx) 

(20) 

where 

$HF 

111 
0 Skin 

Fat 

M~©lo 

Turnout 

Mm~le 

~ Growin 8 
layers 

dT/dh .. 0 

Fig. 3. Scheme for solving a biothermal problem. 

R 
E -  

B 2 __ (all)  2 

C =  

[Bi( 1 + E) - EaH] B exp (B) + E a H ( B -  BO exp (all) 

(B+ Bi) exp (B) - ( B -  Bi) exp (-- B) 

D =  

[Bi( 1 + E) -- EaH]Bexp (-- B) -- EaH(B + Bi)exp (all) 

B[(B + Bi) exp (B) - (B - Bi) exp ( -  B)] 

(2) at B = l aHl: 

0 = C exp ( -  Bx) + D exp (Bx) 

+E(1 +2x) exp ( - -Bx)  (21) 
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where 

R 
E = - - :  

4B 2 

C =  

Bi(1 + E ) - -  B E  + E ( B - -  Bi)(1 - -2B)  
--  (B + Bi)  exp (B)  --  ( B - -  Bi)  exp ( - B) exp ( -- B) 

D =  

Bi(1 + 2E) -- 2 B E ( B  + Bi)  

- ( B +  Bi)  exp (B)  - ( B -  Bi )  exp ( -  B) exp ( -  B). 

Figure 4 presents the dependencies of  a maximum 
temperature of  a tissue on a rheological factor at the 
frequencies of  an emitter 2450, 915 MHz  and 
R = 1.2Rin. The value W b i  n = 1 kg m -3 s - l  ( ~ 5 . 4  ml 
100 g ' min - l )  is taken as an initial one. Com- 
putations were performed with a surface density of  
energy flux corresponding to the threshold of  skin 
pain sensation equal to 0.188 W cm -z [26], 2 = 0.4 W 
m - l  K - l ,  a = 20 W m -2 K -1, Cb = 3640 J kg - l  K - l  ; 
Pb = P = 1050 kg m -3. Coefficient a was determined 
for the considered frequencies by the data of  [27]. In 
a muscle it amounted to - 1 1 8  m-~, - 6 6  m-1 and 
- 5 6  m 1 on the frequencies 2450, 915 and 463 MHz,  
respectively. These values were taken as well for skin 
and tumour. In fatty tissues for the same frequencies 
Bouger coefficients of  electromagnetic radiation 
absorption are - 17.8, - 11.3 and - 7 . 6  m - L  

It is seen from Fig. 4 how considerable is the effect 
of  a rheological factor (change in temperature with 
a four-fold decrease of  the viscoplasticity parameter 
reaches 5-7 K). The decrease of  frequency with the 
same change in the Ilyushin parameter and a fixed 
surface density of  an electromagnetic radiation flux 
results in the reduction of  maximum temperature in a 
homogeneous tissue. 

The change of  the depth at which maximum warm- 
ing-up is reached is shown in Fig. 5. A general tend- 
ency, independently of  emitter radiation, is a weak 
dependence of  this depth on the parameter of  visco- 
plasticity. The reduction of  the frequency of  SHF-  
radiation shifts temperature maximum into a depth 

48 
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1 2 3 4 

nia]n 

Fig. 4. Maximum temperature of tissue with the value of 
relative changes of viscoplasticity parameter. 1, frequency 

2450 MHz; 2, 915 MHz. 

1.6 

a~ 

1.2 

0.8 

1 

0.4 I I I 
I 2 3 4 

njil  

Fig. 5. The depth of maximum heating of tissue with the 
value of relative changes of viscoplasticity parameter. 1, 

frequency is 2450 MHz; 2, 915 MHz; 3,433 MHz. 

of  tissue. According to calculations, this is also facili- 
tated by the increase in the intensity of  skin cooling. 

Thus, the results of  numerical simulation of  per- 
fusion as well as o f  warming-up of  a homogeneous 
tissue indicate a drastic influence of  the rheological 
factor of  a blood flow on the hyperthermia process. 

The above analysis for a homogeneous tissue is not  
exhaustive. Real tissue is substantially anatomically 
inhomogeneous as well as due to the presence of  a 
tumour  in it. It is interesting to analyze the problem 
in this case. 

Consider a plane multilayer tissue with a 1D 
stationary temperature field. In this case the problem 
formulation is similar to equations (15)-(17), 
however, to the conditions on the tissue outer and 
inner boundaries, the conjugation conditions (equality 
of  temperatures and heat fluxes) at the boundaries of  
layers are added. Thus, in the dimensionless form the 
problem is : 

- 2 t 

01, - Bk  " Ok + Rk exp (akHX) = 0 

O'kl . . . .  = (2k+~/2k)O'k+l[ . . . .  k = O, 1 . . . .  n - - 2  

GIx=xk=G+llx=x, k = 0 , 1  . . . .  n - 2  

0;-,Ix=l =0  

(22) 

Here k is the number of  a layer (the outer layer has 
a number  0, the number of  the inner layer is n -  1) ; 

Wb G H  2 otH 
B~ 2k B i  = ~o " 

A general solution o f  this problem has the form 

Ok(X) = Ck exp ( - -  BkX) + Dk exp (BkX) 

where 

+ E k e X p ( a k H x )  (23) 

R,, 
Ek -- (Bk ~ [akH]) 

B 2 _ (akH)  z 

and the coefficients Ck and Dk are found from the 
boundary and conjugate conditions by solving the 
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obtained 
(SLAE) : 

where 

system of  2n 

S ' G = R  

9 2 j = C j  ~'zj+t = D j  j = 0 , 1  . . . .  n - 1  

S00 = - (B0 + B 0  S01 = Bo - - B i  

S 0 k = 0  1 < k < 2 n - 1  

$2 ,_1~=0 ,  k < 2 n - 2  S : , _ l , 2 . _ 2 = e x p ( - - B , _ l )  

S2n_l ,2n_ 1 = e x p  ( B n _ l )  

linear algebraic equations | i  i . . . . . . .  i - ] . .  

L 
(24) : ..% .: ,  

. . .  : . % "%% 
I,1:'..5 =.~.~\$.:.. .:=. 

. . . . .  13 

o 1 2 3 4 5 
x [ca.] 

Fig. 6. Temperature distribution in a multilayer plane tissue 
in the presence and absence of blood flow in the tumour 
core (lower and upper curves bounding the dashed regions, 

respectively). 1, II = llin; 2, II = Ili./2 ; 3, I1 = Ili,/3. 

S,.j = - B, exp ( -  BkXk) Si, j+ 1 = Bk exp (BkXk) 

Si,j+ 2 = Bk+ 1 (~k+ 1/2k) exp (--  Bk+ 1 x , )  

S,j+3 = Bk+I(2k+I/2k) eXp(Bk+IXk) (25) 

j = [ / / 2 ]  i = 2 k + l  0 ~ < k < n - 1 .  

The rest of  Sij  := 0 

ro = Bi(1 + Ec~) - a o H E o  

r2,_ 1 = -- E._ 1 e~tp (a,_ l H )  

r 2k + 1 = ( Ek + 12k+ 1/ 2~ -- Ek )ak H exp ( ak Hxk  ) 

rZk+Z = ( E k + l - - E k ) e x p ( a k H X k )  k = O, 1 . . . .  n - -2 .  

(26) 

Temperatures were found from equation (23) with 
the coefficients Ck and Dk obtained from the solution 
of  SLAE (24). Thermophysical  and hemodynamic 
characteristics of  tissues were taken according to [1] 
and are gathered in Table 2. The case of  a complete 
absence of  a blood flow in the tumour  center (a nec- 
rotized core) was also considered. 

The rate of  a blood flow in a stationary thermal 
state was estimated by equation (14). In this case 
relative change of  the value of  a rheological factor 
varied within the limits Ili,/II = 1 4  in a normal tissue 
and Ilin/II = 1 in a tumour  and R/Rin was assumed 
equal to 1 for a tumour, 1.8 for skin and 1.2 for a 
muscle and a fat layer. 

Figure 6 shows the calculated temperature dis- 
tributions over the depth of  a tissue for the cases o f  
necrotized and relatively weakly perfused tumour  core 
(lower and upper curves bounding cross-hatched 
regions, correspondingly) at Ili,/II = 1, 2 and 4. The 
frequencies 2450 and 915 M H z  were considered. 

As is seen from Fig. 6 the effect of  the necrotized 
core is reduced to some temperature growth which is 
the most substantial in the tumour  center ( ~  1 °C at 
Ili,/II = 1 ; ~0 .8°C at II~n/II = 2 and ~0 .4°C at Ili./ 
I / =  4). 

Temperature maximum at the given values of  the 
initial parameters is attained in the center of  a tumour  
at the frequency 915 M H z  and beyond it (closer to 
skin) at the frequency 2450 MHz.  A considerable 
effect of  a rheological factor on temperature levels in 
a tissue is noticed. 

4. CONCLUSIONS 

( l)  A maximum temperature difference with a not  
very large depth of  tumour  position and the choice of  
an appropriate frequency is observed in the center of  
a tumour.  

Table 2. The parameters of the problem 

p 2 Layer depth W 0 
Tissue [kg m -3] [W m i K-l] [mm] [10 -3 s -t] D/Do 

Skirt 1000 0.376 2 1.63 1.8 
Fat 850 0.45 5 0.15 1.2 
Muscle 1050 0.642 5 0.52 1.2 
Tumour 
Gre wing layer 1050 0.502 1 1.3 1 
Core 1050 0.502 10 0.52/0.13 1 
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(2) A four-fold increase in the Il iyushin pa ramete r  
causes a considerable growth  of  tempera ture  (to 4°C) 
in a tumor.  

(3) Tempera ture  in a necrotized core is by 0.4-1°C 
higher  than  in a perfused one. 

(4) A rheological  factor  of  a b lood flow exerts a 
substant ia l  effect on  a m a x i m u m  value and  the degree 
of  inhomogenei ty  of  tempera ture  d is t r ibut ion in a 
t umour  and  normal  tissue. 
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